Approach to Riemann Hypothesis by Combined Commensurable Step Function Approximation with Bonnet Method

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Riemann Hypothesis for function fields

1 1 Preliminaries 1 1.1 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 The zeta function . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Primes and Divisors . . . . . . . . . . . . . . . . . . . . 2 1.2.2 The Picard Group . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Riemann-Roch . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Notation . . . . ...

متن کامل

Riemann hypothesis from the Dedekind psi function

Let P be the set of all primes and ψ(n) = n ∏ n∈P,p|n(1 + 1/p) be the Dedekind psi function. We prove that, under the assumption that the n-th prime pn is always larger than the first Chebyshev function θ(pn), the Riemann hypothesis is satisfied if and only if f(n) = ψ(n)/n − e log logn < 0 for all integers n > n0 = 30 (D), where γ ≈ 0.577 is Euler’s constant. This inequality is equivalent to R...

متن کامل

On the Riemann Hypothesis for function fields

We prove a variant of Connes’s trace formula and show how it can be used to give a new proof of the Riemann hypothesis for L-functions with Größencharacter for function fields.

متن کامل

A Further Step in the Proof of Riemann Hypothesis

A further step in the strategy for proving Riemann hypothesis proposed earlier(M. Pitkänen, math.GM/0102031) is suggested. The vanishing of Rieman Zeta reduces to an orthogonality condition for the eigenfunctions of a non-Hermitian operator D having the zeros of Riemann Zeta as its eigenvalues. The construction of D is inspired by the conviction that Riemann Zeta is associated with a physical s...

متن کامل

Partial Euler Products as a New Approach to Riemann Hypothesis

Abstract. In this paper, we show that Riemann hypothesis (concerning zeros of the zeta function in the critical strip) is equivalent to the analytic continuation of Euler products obtained by restricting the Euler zeta product to suitable subsets Mk, k ≥ 1 of the set of prime numbers. Each of these Euler product defines so a partial zeta function ζk(s) equal to a Dirichlet series of the form ∑ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Pure Mathematics

سال: 2020

ISSN: 2160-0368,2160-0384

DOI: 10.4236/apm.2020.105013